Jown ParhExplorer - A Runruue Verttication Tool

Wlaus Havelund
Kestrel Technology
NASA Ames Research Center
Moffeet Field. C AL 94035
havelund@ptolemy.arc.nasa.gov-”

Grigore Rosu
Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field. CA. 94035
grosu@Qptolemy.arc.nasa.gov

Keywords Software testing, runtime verification,
event tracking, temporal logic based monitoring, er-
ror pattern analysis. concurrent programs, dead-
locks. data races, Java. byte-code instrumentation.

Abstract

We describe recent work on designing an environ-
ment. called Java PathExplorer, for monitoring the
execution of Java programs. This environment fa-
cilitates the testing of execution traces against high
level specifications, including temporal logic formu-
lae. In addition. it contains algorithms for detecting
classical error patterns in concurrent programs. such
as deadlocks and data races. An initial prototype of
the tool has been applied to the executive module of
the planetary Rover K9, developed at NASA Ames.
In this paper we describe the background and mo-
tivation for the development of this tool, including
comments on how if relates to formal methods tools
as well as to traditional testing, and we then present
the tool itself.

1 Introduction

Software is getting an increased unportance in
the development of space craft and rover technol-
ogy within the space agencies. [t is recognized
that future space crafes will become highly -
ronomons. taking decisions without communication
from ground. Hence, the required softwire is be-
coming more complex. increasing the risk of mission
Fulures. Testing of such svstems therefore becomes

crucial. Traditional testing techniques. however, are
very ad hoc and do not allow for formal specification
and verification or testing of the properties that a
system needs to satisfy.

The Automated Software Engineering group at
NASA A Reocaro. Coates b o che los Jhree
years worked on developing advanced verification
and testing technology for space applications. Part
of this work has consisted of performing case studies
using formal methods, in particular model checking,
to analyze space craft software [6]. Based on the
experiences of these case studies, two tools have fur-
thermore been developed. both supporting full state
space exploration of Java programs using explicit
state model checking techniques [7, 14]. These tech-
niques allow for checking temporal logic properties
on programs that have a few million states. but fail
to apply on large programs. Abstraction is required
in order to increase the applicability of such tech-
nigues. an often manual and labor-some process.

We present a new runtime verification system.
Java PathExplorer (JPAX). for monitoring of Java
program execution traces. The general concept con-
sists of extracting events from an executing program.
andl then analyzing the events via a remote observer
process. The observer performs two kinds of ver-
iBeation: {ogie bused momtoring and error pattern
unalysts.

Logue bused monitoring consists of checking exe-
cution toaces against user-provided formal require-
ment speciications. written in high level logies.
Logies are currently implemented me the specifica-
rion Lnguage Mande [high-performance system
supporting both membership cqnational logie and

resrtiing towse Montde ailows todehine new oty in
Atlesable manner snch s o exoaaaple teporal fog-
s tonether wirh thewr operational semantues -
contly we support furge rmme el past nme finear
remporal logie as predetined foetes. The unplemen-
tation of both rhese logies cover less than 130 fnes.
hence defining new logies. for example domain spe-
cific ones. shoild be very feasible for an advanced
nser. The current version of Mande can do up to
3 willion rewrirings per second on 300Mhz proces-
sors. and its compiled version is intended to support
15 million rewritings per second. Hence Mande can
be nsed as the monitoring engine that performs the
conformance rhecks of events against specifications.

Error pattern analysts consists of analyzing execu-
tion events using various error detection algorithms
that can identify error-prone programming practices.
Examples are unhealthy locking disciplines that may
lead to data races and deadlocks. For example, a
deadlock potential can be discovered from a single
trace. even if that particular trace has no deadlocks,
if it can be observed that lock acquisitions do not
foilow a partial order. By not requiring the errors to
actually occur in order to be detected, this is a way
(0 obrain a hizh degree of coverage although onlv
GLC Onelaull L2 o o excainned. fno goaeral, we oy
to identify various concurrency error patterns.

The idea of using temporal logic in program test-
ing is not new. and has already been pursued in the
commercial Temporal Rover tool (TR) [3]. and in

"= MaC tool {10]. TR allows the user to specify

poral formulae as comments in programs. The
Mad tool is closer to what we describe in this pa-
per. except that its specification language is very
limited compared to the Maude language. In ad-
dition. we combine specification checking with error
pattern analysis. In a tool like Visual Threads [4. 13],
these runtime analysis algorithms have been hard-
wired into the system and are therefore difficult to
change or extend b .a user.

Eventually the system should allow to monitor
programs composed of subprograms written in dif-
ferent programming languages including also C++
and C. The system described in this paper will focus
on Java. A case study of 90,000 lines of C++ code
for a rover controller has been carried out. leading to
the detection of a deadlock with a minimal amount
of effort. [t is our main goal to make the system as
zeneral and generic as possible. allowing to handle
multiple langnage systems. and allowing new verifi-
carion riles to be defined. even defining new spec-
iHeation logies using Maude. This way we hope to
make the svstem a basis for experiments rather than

o Hxed svstem.

Fhee paper s ozl s follows Serton 2 ode-
“cribis the overall arehireetige of tlue sesret Section
3 deserthes the noederts i loote formalisms for writ-
ing requirement speefications, ahile Sectwn b ode-
wertbes ot of the vrror derection afgorithms tor de-
Dugging conenrrent progriams Finally, Section 5 ron-
rains conclusions and 4 description of Sionre work.

2 System Architecture

The architecture of JPAX is shown in Figure 1. The
input to JPANX consists of two entities {or rather
pointers to these;: the Java program in bvte-code
format to be monitored (created using a standard
Java compiler} and the specification script defining
what kind of analysis is requested. The output is a
(possibly empty) set of warnings printed on a special
screen.

Specificauons

Bytecode

Dipatcher

Instrument v

[nstrumented
Bytecode

Execute
VM

Figure 1: JPAX Architecture

The specification script consists of an instrumen-
tation script and a verification script. The instru-
mentation script defines how the program should be
instrumented while the verification script defines ex-
actly what kind of analysis should be performed. and
if logic based monitoring is requested: what proper-
ties shonld be verified. Currently. the scripts are
written in Java. which calls Maude if needed. Thus.
high level Java language constructs can be used to
define rhe boolean predicates to be observed. Then
the vahies of those predicates are shipped to Maude
for deeper logic-based analvsis.

JPAX can be regarded as consisting of three
main modules: an nstrumentation module. an
observer module. and an nterconnection module
rhat ties thew together through the obserced event
stream. The instrumentation module perforns
seript-driven antomated instrumentation of the pro-
gram to be observed. The instomentedd programn.

hen . s ere relesint events to the mteraction
modide, whieh Sether teansonts them o the obser-
catton modale The observer may i on o hifferent
Gtupetrer anowinch case the events are reansouit ted
cver o sockets Tser detined oprions allow to define
rhie generad <etiap

[he instrumentation s performed wsing the Jtrek
Java byte-code engineering tool (2} from Compay.
This rool allows ro read Java class files (byte-code
Hles). traverse rhem as abstract svatax trees while
sxamining their contents. and insert new code in a
highlv Hexible manner. The inserted code can access
the contents of the method call-time stack at run-
time. hence giving access ro information needed in
the analysis. The extracted information is transmit-
red in the events. The observer receives the events
and dispatches these to a set of observer rules, each
rule performing a particular analysis that has been
requested. Observer rules can be written in Maude
or in a traditional programming language such as
Java. or even C if speed is crucial. Generally, the
rule based design allows a user to easily define new
runtime verification procedures.

The only language specific part of the system is the
instrumentation module. If one wants to set up the
mvionmeh. foo o dlferenn language, S do o T,
one will only have to replace this module. We tried
this together with Rich Washington, a member of
the Robotics group at NASA Ames, on a 90,000 line
C+~+ application. just activating the deadlock detec-
tion rule. and located a deadlock. This work will be
preseuied in a different publication.

3 Logic based Monitoring

As previously mentioned. JPAX currently allows two
conceptually independent methodologies for runtime
verification. One is specification based monitoring,
which is the subjeet .of this section, and the other
is error pattern analysis presented in the next sec-
trion. The main difference between the two is that
the first counts upon an underlying logic in which
the user can express any application dependent logi-
cal requirements, while the second implements more
or less standard programming language dependent
algorithms that detect typical concurrency error po-
tentials. [n this way. we believe that JPaX offers a
large. if not a full. spectrum of possibilities for run-
time vertheation.

In order to write @ tuntime requirement specifica-
tion. the nser should Hest choose an appropriate logic
to express the intended properties. JPAX corrently
provides linear temporal logies. both futiee time and

past time, s bigltin lowgess bt one could relarively
pastly detine new logies or enneh the exastug ones,
Notiee that multiple logies can be nsed i paradlel, so
cach properey can be expressedd s most sttable
langiuage. Since the Mande implementations of the
current logics are quute compact. we took the liherty

to include them w the piper.

3.1 The Maude Language

Maude [1] is a modularized specitication and verifi-
cation system that efficiently implements rewriting
logic. It is relatively widely accepted that rewrit-
ing logic acts like a universal logic. in the sense that
other logics. or more precisely their syntax and op-
erational semantics, can be implemented in rewrit-
ing logic. Furthermore, Maude provides support for
meta-programming, so complex logic dependent rea-
soning strategies can be implemented as well; how-
ever, we didn’t need the meta-level yet, but we ex-
pect to need it soon, as JPAX will be extended.
There is not enough space to present the Maude no-
tation in more detail here, but we'll introduce some
of it “on the fly” as we give examples, such as the
following one.

3.1.1 Propositional Calculus

The following module for propositional calculus.
which is heavily used in JPaX, implements an ef-
ficient procedure due to Hsiang [9] to decide validity
of propositions:

fmod PROP-CALC is pr FORMULA .
«ss Constructors e
op /\. Formula Formula -> Formula (assoc comm]
op .++_ : Formula Formula -> Formula [assoc comm]
wars X ¥ Z : Formula . var Ass : AtomStatees .
eq true /A X = X . aq false /\ X = false .
eq false »+ X = X . eq X ++ X = false .
eq X /AN X =X .
aq X /N (Y ++2) = (X /N Y) ++ (X /\2)

s« Derived operators ses

op _\/_ : Formula Formula -> Formula [assoc]
op ' : Formula -> Formula .

op 7>, formula Formula -> Formula .

op _<->_ Formula Formula -> Formula .

@ X A/ ¥ = (X /N Y) #+ X es ¥ .
aq ' X = true s+ X .
aq X -> Y = true ++ X ++ (X /N Y)
aq X <-> Y = true ++ L ++ ¥
ees Data structure & Semantics
aq (X /\ Y){(Ase} = X{Ase} /\ Y{Ase}
aq (X »+ ¥)(Ass} = X{As«} *+ Y{Ase} .
andfa

The underscores stay for arguments. The mod-
ule FORMULA which is “protected”™ (or imported) de-
fines the infrastructure for all the user-defined logies.
That includes some designated hasic sorts {or types)
such iy Formula for svntactic formulae. Formulads for
formulin data srenetures needed when more informa-
tion then the formula tself shonbd be kepr for the

et teansiton s tu the case ol past nime hnear
retporal loune. AromSrare for assignments of boolean
vahiies fo atonie oroposinons and AtomStates for as-
et s s above togethier with hoal assignments,
Lo those that are followed by the end of rrace tour
semanrios or the end of the exeention trace is that of
A contimions process that doesn’t change the state).
The nser is free ro extend these tvpes and;/or pro-
vide appropriate implementations for them as w the
modiule above. Perhaps the most important oper-
ation provided by the modnle FORMULA is an oper-
ation _{_}:FormulaDS AtomState -> FormulaDS which
npdates the formula data structure when an {ab-
stract) state change occurs during the execution of
the program. Notice that rhis update operation acts
like a morphism for propositional calculus, so it ba-
sically evaluates the propositions in the new state.

3.2 Linear Temporal Logics

Linear temporal logics (LTL) are widely accepted
as reasonably good formalisms to express require-
ments of reactive systems. However, there is a tricky
aspect of specification based monitoring which dis-
tingnishes it from other formal methods techniaues,
suct as model checking and tuneorcar proviug: the
end of trace. Sooner or later, the monitored pro-
gram will be stopped and so its execution trace. At
that moment. the observer needs to take a decision
regarding the validity of the checked properties. Let
us consider for example the formula T(p — og). If
sach p was followed by at least one g during the mon-
irored execution. then, at some extent one could say
that the formula was satisfied; but one should be
aware that this is not a definite answer because the
formula could have been very well violated in the fu-
ture if the program hadn't been stopped. If p was
true and it was not followed by a q. then one could
say that the formula was violated, but it may have
been very well satisfied if the program had been let to
continue its execution. However, there are LTL prop-
erties that give the user absolute confidence during
the monitoring. For example. a violation of a safety
property reflects a clear misbehavior of the moni-
tored program.

The lesson that we learned from experiments with
LTL monitoring is twofold. On the one hand, we
learned that. unlike in model checking or theorem
proving. LTL formulae and especially their violation
or satisfaction must be regarded with provisions dur-
ing monitoring. On the other hand, we developed a
belief that LTL may not be the most appropriate for-
mathistm for logie based monirorimg; other more spe-
cific logies. such as real time LTLL inrervald logies, or

oven liseovered ones. conddd he ot greater iterest
than pure LIL (o the next subsections we briely
desertbe one smple anpletentanons of tature rime

and past tine LG e Moede

3.2.1 Future Tume LTL

Future time LTL can be tmplemented more easily
rhan we initiallv thought on top of propositional cal-
eulus. [t basically geeds only 2 rules. a pair for each

oper:m)r:

fmod FT-LTL is ex PROP-CALC
ane Syntax “ae
ops ([J.) (¢>_) (o) : Formula -> Formula
ap _U_ : Formula Formula -> Formula .
ses Data structure & Semantics
vars X Y : Formula . var As : AtoamState .
eq ([J X){As } = ([0 X) /\ X{As} .
aq ([] X){As ¢} = X{As <}
aq (<> D{As } = (<> X) \/ X{As} .
aq (<> X){As ¢} = X{As ¢} .
aq (o X){As } =X .
aq (o X){As ¢} = X{As *} .
eq (X U Y){As } = T{As} \/ (X{As} /A (XU T)) .
eq (X U Y){As *} = Y{As ¢} .
endfm

Each pair of rules says how a formula transforms
during the execution of the program. More precisely.
they inpiet.cut we following sunp.we equivalences:

sty iff thE s}
sk M p{sx} = true.

where st is a trace formed by a state s followed by
a nonempty trace t. while s can also be viewed as
the trace consisting of s followed by the end of trace.
A proof of correctness of this algorithm is given in
{8]. Despite its overall exponential complexity. this
algorithm tends to be quite acceptable in practical
situations. We couldn't notice any sensible difference
in global concrete experiments with JPAX between
this simple 8 rule algorithm and an automata based
one that implements in 1,400 of Java code a Buchi
automata algorithm adapted to finite trace LTL (see
Subsection 3.3).

3.2.2 Past Time LTL

Past time LTL is useful for especially safety prop-
erties. These properties are very suitable for logic
based monitoring because ouce they fail we know for
sure that the program is not correct. The imple-
mentation of past time LTL is a bit more tedious.
It is also built on top of propositional calculus, by
adding the usual two past titme operators. ~. for pre-
mons and S for swnee. and then appropriate data

structures and SeMANEes:

fmod PTOLTL 1a wo 2RUP-CALC
“ee Syntaxg
o Focmuta -» Formula
-2 Formula Farmula -» Formula
se+ Data structure & Jemantics
ap arlrnl Formulr -> FormulaDS
p atom Aton B8ool -> FormulaD$
ps prav FormulaDS 8ool -> FormulaD$
>ps ind tor since FormulaDS FormulaDS 8col -> FormulaDS
sars K Formula vars 0 Ox Dy D’ Dx’ Oy’ FormulaD$
sar 3 Bool 7ar A Atom var As AtomState
aq ptltlitruel{As} = true aq ptltl(false}{As} = false
wq ptLtl(A){As} = atom(A, (A{As} == true))
eq ptLtl(” X){As} = false
caq ptltl(X S Y){As} = since(Dx, Dy, [Dyl)
if Dx := ptLel(X){As} /\ Dy := ptLtl(Y){As}
ceq ptLtl(X /\ Y){As} = and(Dx, Dy, (Dx] and (Dy])
Lf Dx = ptLel(X){As} /\ Dy := ptLel(Y){As}
ceq ptLtl(X e+ Y){As} = xor(Dx, Dy, [(Dx] rxor [Dy])
if Dx = ptLtl(X){As} /\ Dy .= peLtl(Y){As}
eq [atom(A,B)] = B
eq (prev(D,B)] = 3
eq [since(Dx,Dy,3)] = 8
eq [and(Dx,Dy,B)] = B . eq [xor(Dr,Dy,8)] = B
eq atom(A.B){As} = atom(A, (A{As} == true)) .
«q prev(D,B){As} = prev(D{As},(D]) .
ceq since(Dx,Dy,B){As} = since(Dx’,Dy’,[Dy’] or B and [Dx]}
if Dx’ := Dx{As} /\ Dy’ := Dy{As}
ceq and(Dx,Dy,B){As} = and(Dxz’,Dy’,[Dx’] and (Dy’])
it Dx’ := Dx{As} /\ Dy’ := Dy{As} .
ceq xor(Dx,Dy,B){As} = xor(Dx’,Dy’,[Dx'] xor [Dy'l)
if Dx’ := Dx{As} /\ Dy’ := Dy{As} .
eaq atom(A,B){As ¢} = true .
aq prev(D,B){As *} = true .
eq since(Dx,Dy,B){As *} = true .
aq and{Dx,Dy,B){As *} = true .
eq xor(Dx,Dy.B){As »} = true

o

The operation ptLTL initializes/creates the data
structure associated to a past time LTL formula, the
operation [.] reads the current truth value of a for-
mula, while the operator .{_} updates a formula data
structure.

3.3 Observer Generation

As one naturally expects, monitoring via event ex-
traction can significantly slow down the normal ex-
ecution of the monitored program. In particular,
the two event buffers of JPAX (one from the instru-
mented program to the observer and the other from
the observer to Miude) sometimes slow down the
original program by an order of magnitude. We are
still investigating the real reasons for this. but at this
stage we believe that a significant factor comes from
the butfer communication between the observer im-
plemented in Java and the logic engine implemented
in Maude. Therefore, it may be desirable to device
Java implementations that directly check formulae
against execution traces., at least for those logics that
rurn ot to be heavilv used.

Since JPAX only uses linear temporal logics, we
concentritted only on future time and past time LTL
so far. [n [12] we showed how one could generate a
dynamic-programming based algorithm from any fu-
ture time LTL formnla, showing that it runs in time

i where nogs the swe b the reace and o
the stze of rhe tornoda Datortanacely, thae algo-
pirhun wisits the cxeonrion trace backewads, meaning
tat o fortnda can be rested ool afrer the program
s stopped and adl irs execnnion reace stored. Fortu-
tatelv. the same idea applied on past rime LTL vields
by duadization o forwards algorithin which cuns in
the same time: it s hared ro helieve that one can test
past time LTL formulae on Huite traces faster.

Taking into acepunt the continuously decreasing
price of storage. the backwards algorithm for future
rime LTL [12] 1s acceptable even bevond the proto-
rvping stage of the tool. Our colleague Dimitra Gi-
annakopoulou took the challenge and implemented
in about 1.400 lines of Java code a modified version
of a Buchi automata algorithm that takes into ac-
count the particularities of finite trace LTL: the de-
tails of her implementation will appear elsewhere. It
seems that finite trace LTL is a significantly simpler
and more computable logic than the standard infinite
trace LTL. In particular. we were able to show the
existence and then generate a minimal standard au-
tomaton from any formula, automaton that accepts
exactly those finite traces that satisfy the formula:
this construction will also appear elsewhere.

Jus aln Coneertn ab this stdge oo I lggaie
more suitable logics for monitoring than future time
LTL rather than generating efficient implementa-
tions for formula checkers. The flexibility and ease
in developing and/or modifving logics in rewriting
logic. as well as its expressivity. efficiency and sup-
port for meta-programming. make Maude a perfect
choice as a logic engine to validate user defined re-
quirements at this early stage of JPAX.

4 Error Pattern Analysis

Error pattern analysis is conceptually based on an-
alvzing an execution trace using varions algorithms
that are able to detect error potentials even though
errors do not explicitely occur in the examined exe-
cution trace. The goal is to extract as much infor-
mation as possible from a single execution trace to
be able to suggest problems in other execntion traces
that have not been explored. Two examples of such
algorithms focusing on concurrency errors have been
implemented in JPAX: a data race analvsis algo-
rithm and adeadlock analyvsis algorithin. Previously,
both algorithms have been implemented in the Vi
sual Threads tool {8 o work for ¢ and = —2 Also.
in recent work we inplemented the dita race algo-
rithm and a vartant of the deadlock algorithm in the
Java PachFinder tool 31 ro work for Java by mod-

dvine, the oo Vetnad Mochine desertbed i P
Onr contriinnon here s to o make these algortrhms
work for v astg byvre-code mstonmentation: Lo
mreerite them wirh logie based monttoring; and o
make it pessible for an advanced iser to prograun
new ervor pattern atadysis oules i Hexible manner.
Error parrern analvsis algorithms typically do not
snarantee rhar errors are found since they, after all.
work on a single arbitrary trace. They also may
vield false positives in the sense that analysis results
indicate warnings rather than hard error messages.
What is atrractive about such algorithms is, however,
that thev seale very well. and that they often seem
ro catch the problems they are designed to catch.
That is. the randomness in the choice of run does
not seem o imply a similar randomness in the anal-
vsis results. [n the following we will shortly describe
the data race and deadlock detection algorithms.

4.1 Data Race Analysis

This section describes the Eraser algorithm as pre-
sented in [13]. and how it has been implemented in
JPaX to work on Java programs. A data race oc-
curs when two concurrent threads access a shared
ve . od whe nat east o access iy oL tan !
the threads use no explicit mechanism to prevent the
accesses from being simultaneous. The Eraser algo-
rithm detects data races in a program by studying
a single run of the program, and from this trying to
conclude whether any other runs with data races are
possible. We will illustrate the data race analysis

with the following example.

. class Value{
private int x = 1;

public int get(){return x;}

1
2
3.
4. public synchronized void add(Value v){x = z + 7.get():}
5
6
7.}

3

9. class Task cxtnndg_Ihrcad{
10. Value 71; Value v2;’

1.

12. public Task(Value vl,Value v2){

13. this. 7! = vl; this. v2 = v2;

14 this. start(};

5. }

16

L7 public 7oid rua(){vl add(v2);}

13. }

19

20. class Main{

21 public static void main(String{] args){
22 Value 1 » nev Value(): Value v2 = nev Value();
23 new Task(vl,v2); nevw Task(v2,vl);

24 }

25}

The Value class defines an integer variable x. a
synchronized method add for updating the variable
{auddding the conrents of another Value variable), and

an i nehronoed ethod get tor readhing the var-
able The Tasg class s theead class, instances of
whieh ean be started with the stare ethod o ex-
cente therr cun method Two sueh rasks ace started
i rhe mann prostian on two mstanees of the Value
cliass. When mnning JPAX with the Eraser option
switched on. a dara rice potential 15 found. report-
ing thar the variable x in cliss Value is accessed
nnprotocted by the two Task rhreads in lines 4 and 6
respectivelv. The groblem detected is that one Task
thread can call the add method on an object, say ¢y,
with a parameter Value object vy, and this method
in rurn calls the unsvnchronized get method on va.
The other thread can simultaneously make the dual
operation. hence. call the add method on v». Hence
the x in v» mav be accessed simultaneously by the
two threads. In fact two data race warnings are emit-
ted since the same situation is possible with v; and
v- interchanged.

One could argue that all methods should be syn-
chronized such that data races can be detected us-
ing simple type checking. However it is often seen
that Java programmers avoid defining all methods as
synchronized in order to optimize the program {syn-
chronization slows down an application somewhat).
Fur hece wes vichooniodt o a0 alrer ac o, br
achieved by executing synchronized statements such
as:

synchronized(v1){

v1.add(72)
}

In this case it becomes impossible to detect data race
potentials syntactically. This is the situation in lan-
guages such as C and C++ using Pthreads {11].
The basic algorithm works as follows. Two data
structures are maintained in the observer: a thread
map keeps track of which locks are owned by any
thread at any point in time. The second data struc-
ture. a varigble map. associates with each (shared)
variable in the program at any point in time the
biggest set of locks that has been commonly owned
by all accessing threads in the past. If this set be-
comes empty a data race potential exists. That is.
when a field is accessed for the first time. the locks
owned hy the accessing thread at that time are stored
in this set. Subsequent accesses by other threads
causes the set to be reduced to its intersection with
the locks owned by those threads. An extra state ma-
chine is introduced for each Held to keep track of how
many threads have accessed rthe vartable and how.
This is used to reduce false positives in the case for
pxample Hebds are mitialiced by a single thread with-
onr locks {which is safe) ot several threads just read
4 vartable after it s been inmtialized Cwhich is also

wifer Amongst the cvents that aee anportant for che
dota riee analvais e monttor lockimgs and relenses,
cicher eesulting from executung Javie s synchronized
statements or from cadling, retnening from svnchro-
nized methods, Farthermore, all aceesses ro feld

variables and elass vanables are analvzed,

Deadlock Detection

A classical deadlock situation can oceur where two
threads £, and t, share two locks vy and . and they
rake the locks in different order The deadlock will
arise if £, takes ¢y and £, immediately after rakes va.
Now t; cannot get v» and t; cannot get vy. Using
the previous example. we can create such a situation
if we wrongly try to repair the data race by defining
the get method in line 6 as synchronized:

6. public synchronized int get(){return x;}

Now the x variable can no longer be accessed simulta-
neously from two threads, and the data race module
will no longer give a warning. However, when run-
ning JPAX on the modified program, a lock order
problem not present before is found and a warning
states that two voject instances of Lae Value ciass are
taken in a different order by the two Task threads,
and it indicates the line numbers where the threads
may potentially deadlock, hence where the access to
the second lock may fail: line 4 where the call of the
get method from the add method will lock the sec-
ond object. Note that this deadlock does not need
to occur in the execution in order for this warning
to be issued. In fact. any execution of this example
program will cause a warning to be issued.

The algorithm works as follows. Two data struc-
tures are maintained in the observer: as in the data
race algorithm a thread map keeps track of which
locks are owned by any thread at any point in time.
The second data structure, a lock graph, maintains
an accumulating graph of all the locks taken by
threads during an execution. recording locking or-
ders as edges. That is. an edge is introduced from a
lock vy to a lock vs in case a thread owns v while
taking . If this graph ever becomes cyclic it re-
Hects a deadlock potential. Note that this algorithm
can catch deadlock potentials between many threads
as illustrated for example by the classical dining
philosopher’s example, independent of the number of
philosophers. The events that are umportant for the
cliuta race analvsis are monitor lockings and releases:
sither resulting trom executing Java's synchronized
staterents or from calling/returning from synchro-

mzed methods.

5 Counclusions

\ broel descrrpiion of TPV o mintime Lortheation
covironment cieeentis ander expertmentation aond
developmenr. wis presenred. Motivation el nre-
sration in the overall NASA Ames aromated softr-
ware enginecriy offort was hughiighred, emphastzing
that our main goial wis ro smoothly combine rest-
ing and formal methods. while avouding some of the
pitfalls from ad hoe resting and the complexity of
full-blown theorent proving and model checking. A
general svstem archirecture of JPAX was depicred.
followed by more Jetailed explanarions of its com-
ponents. espectally logic hased monitoring and error
pattern analysis.

In fucure work on logic based monitoring. we will
experiment with new logics in Maude more appro-
priate to monitoring than LTL. such as interval and
real time logics and UML notations. The latter al-
lows to check original designs (via state charts and/or
sequence diagrams) against “real” execution traces.
A longer term agenda is oriented toward fast imple-
mentations of designated logics in more conventional
programming languages than Maude. thus improving
the overall speed of the monitoring process. Future
worl or eeu, e ame'ys o wllh e e develu
new algorithms for detecting other kinds of concur-
rency errors than data races and deadlocks. and of
course to try to improve existing algorithms.

We will also study completely new functionalities
of the system. such as guided execution via code in-
strumentation to explore more of the possible inter-
leavings of a non-deterministic concurrent program
during testing: and guidance of the program dur-
ing operation once a requirement specification has
been violated. Dyvnamic programming visualization
is also a future subject. where we regard a visualiza-
tion package as just another rule in the observer.

A more user friendly interface. both graphical and
functional, will be provided, in addition to an im-
proved modularization of the whole svstem such that
to easily adapt it to various programming languages
and varions instrumenting methodologies. Of course.
the tool will be evaluated on real case studies.

References

(1] M. Clavel. F.J. Durin. S. Eker. P. Lincoln.
N Marti-Olier. I Meseguer. and Jo Fo Que-
sk, The Maude svstem. In Droceedings of
the [0th [nternational Conference on Rewriting
Technuques and Applications (RTA-99). volume
631 of LNVCS. pages 240 283 Trento. [tady.
Jaby 1999 Springer-Verlag, Svstem deseriprion.

o

S Cohen Poek Compag,

ntep: //dwd compaq.com/ java/download/ jtrek.

D Drasnsks The Temporad Rover and rhe
ATG Rover, In SPIN Model Checkong anid Soft-
ware Verfieation, voline 1835 of LYCS. pages
323 3500 Springer. 2000,

J Harrow. Runtime Checking of Multitheeaded
Applications with Visual Threads. In SPIN
Moaodel Checking und Software Verification. vol-
ume 183 of LNCS. pages 331-342. Springer.
2000).

7 K. Havelund. Using Runtime Analysis to Guide

Model Checking of Java Programs. In SPLNV
Model Checking and Software Verification. vol-
ume 1383 of LNCS. pages 245-264. Springer,
2000.

K. Havelund. M. Lowry, and J. Penix. Formal
Analysis of a Space Craft Controller using SPIN.
In Proceedings of the {th SPIN workshop, Paris,
France. November 1998. To appear in [EEE
Transactions of Software Engineering.

K. Havelund and T. Pressburger. Model Check-
ing Tave e oo PothFinde . 7a-
ternational Journal on Software Tools for Tech-
nology Transfer, 2(4):366-381, April 2000. Spe-
cial issue of STTT containing selected submis-
sions to the 4th SPIN workshop. Paris, France,
1998.

ns sty Jav

. Havelund and G. Rosu. Testing Lin-
ear Temporal Logic Formulae on Finite
Execution Traces. RIACS Technical re-
port, http://ase.arc.nasa.gov/pax, Novem-
ber 2000.

J. Hsiang. Refutational Theorem Proving using
Term Rewriting Systems. PhD thesis, Univer-
sity of Illinois at Champaign-Urbana, 1981.

[. Lee, S. Kannan, M. Kim, O. Sokoisky, and
M. Viswanathan. Runtime Assurance Based
on Formal Specifications. In Proceedings of
the [nternational Conference on Parallel and
Distributed Processing Techniques and Applica-
tions. 1999,

B. Nichols, D. Buttlar. and J. P. Farrell.
Pthreads Programming. O Reilly. 1998,

G. Rosu and K. Havelund. Synthesizing Dy-
namic Programming Algorithms from Linear
Temporal Logic Formulae. RIACS Technical re-
port. http://ase.arc.nasa.gov/pax. January
2001

31 S. Savage. M. Barrows, Go Nebsows PooSobal-

varro, and [Anderson. Eraser: .\ Dyvnanic
Data Race Derector tor Mudtithreaded Pro-
srams. ACM Transactions on Compnter Sys-
tems. 1304):391 ~t11. November 1997,

W. Visser. K. Havelund, G. Brat. and S. Park.
Muodel Checking Programs. In Proceedings of
ASE2000: The 15th [EEE International Con-
ference on Autotnated Software Engineering.
[EEE CS Prefs. September 2000.

